일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 생명주기
- 안드로이드스튜디오
- ActivityTestRule
- 코틀린
- searchview
- 테마 아이콘
- espresso
- 뷰변경 감지
- high order function
- 안드로이드
- IntentTestRule
- Error:Execution failed for task ':app:mergeDebugResources'
- recyclerview
- adapter
- fragment
- 스와이프
- 리사이클러뷰
- LayoutManger
- viewholder
- ui test
- 안드로이드개발레벨업교과서
- 고차함수
- 코딜리티
- 구분선
- Android
- Fragment에서 Activity의 함수 사용하기
- 재사용
- binding adapter
- Fragment 수동 추가
- 안드로이드13
- Today
- Total
목록개발/알고리즘 (34)
룬아님의 취중코딩
CountFactors A positive integer D is a factor of a positive integer N if there exists an integer M such that N = D * M. For example, 6 is a factor of 24, because M = 4 satisfies the above condition (24 = 6 * 4). Write a function: class Solution { public int solution(int N); } that, given a positive integer N, returns the number of its factors. For example, given N = 24, the function should retur..
MaxSliceSum A non-empty array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P ≤ Q < N, is called a slice of array A. The sum of a slice (P, Q) is the total of A[P] + A[P+1] + ... + A[Q]. Write a function: class Solution { public int solution(int[] A); } that, given an array A consisting of N integers, returns the maximum sum of any slice of A. For example, given a..
EquiLeader A non-empty array A consisting of N integers is given. The leader of this array is the value that occurs in more than half of the elements of A. An equi leader is an index S such that 0 ≤ S < N − 1 and two sequences A[0], A[1], ..., A[S] and A[S + 1], A[S + 2], ..., A[N − 1] have leaders of the same value. For example, given array A such that: A[0] = 4 A[1] = 3 A[2] = 4 A[3] = 4 A[4] ..

MaxProfit An array A consisting of N integers is given. It contains daily prices of a stock share for a period of N consecutive days. If a single share was bought on day P and sold on day Q, where 0 ≤ P ≤ Q < N, then the profit of such transaction is equal to A[Q] − A[P], provided that A[Q] ≥ A[P]. Otherwise, the transaction brings loss of A[P] − A[Q]. For example, consider the following array A..