룬아님의 취중코딩

Codility 31번 CountSemiprimes 본문

개발/알고리즘

Codility 31번 CountSemiprimes

룬아님 2019. 10. 19. 15:38

CountSemiprimes

 

A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.

A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.

You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.

Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.

For example, consider an integer N = 26 and arrays P, Q such that:

P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20

The number of semiprimes within each of these ranges is as follows:

  • (1, 26) is 10,
  • (4, 10) is 4,
  • (16, 20) is 0.

Write a function:

class Solution { public int[] solution(int N, int[] P, int[] Q); }

that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries.

For example, given an integer N = 26 and arrays P, Q such that:

P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20

the function should return the values [10, 4, 0], as explained above.

Write an efficient algorithm for the following assumptions:

  • N is an integer within the range [1..50,000];
  • M is an integer within the range [1..30,000];
  • each element of arrays P, Q is an integer within the range [1..N];
  • P[i] ≤ Q[i].

 

class Solution {
    public int[] solution(int N, int[] P, int[] Q) {
        // write your code in Java SE 8
        int[] array = new int[50001];
        int[] flag = new int[50001];
        array[1]=1;
        int cnt = 0;
        for(int i=2; i<array.length; i++){
            for(int j=2; i*j<array.length; j++){
                if(array[i] == 1){
                    break;
                }
                array[i*j]=1;
            }
        }
        for(int i=2; i<array.length; i++){
            for(int j=2; i*j<array.length; j++){
                if(array[i] == 0 && array[j] == 0){
                    array[i*j]=2;
                }
            }
        }
        
        for(int i=0; i<array.length; i++){
            if(array[i]==2){
                cnt++;
            }
            flag[i] = cnt;
        }
        
        int[] ans = new int[P.length];
        
        for(int i = 0; i<ans.length; i++){
            ans[i]= flag[Q[i]] - flag[P[i]-1];
        }
        
        return ans;
    }
}

 

https://app.codility.com/demo/results/trainingBNJXB7-DVT/

반응형

'개발 > 알고리즘' 카테고리의 다른 글

Codility 33번 ChocolatesByNumbers  (0) 2019.10.29
Codility 32번 CountNonDivisible  (0) 2019.10.20
Codility 29번 Peaks  (0) 2019.09.30
Codility 28번 MinPerimeterRectangle  (0) 2019.09.30
Codility 26번 MaxDoubleSliceSum  (0) 2019.09.25
Comments