일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Android
- Error:Execution failed for task ':app:mergeDebugResources'
- fragment
- 구분선
- viewholder
- 재사용
- binding adapter
- espresso
- searchview
- Fragment에서 Activity의 함수 사용하기
- 안드로이드
- recyclerview
- 생명주기
- 스와이프
- adapter
- 테마 아이콘
- Fragment 수동 추가
- 안드로이드13
- high order function
- 고차함수
- 코틀린
- 안드로이드개발레벨업교과서
- LayoutManger
- ui test
- IntentTestRule
- 리사이클러뷰
- ActivityTestRule
- 코딜리티
- 안드로이드스튜디오
- 뷰변경 감지
- Today
- Total
룬아님의 취중코딩
Codility 29번 Peaks 본문
Peaks
A non-empty array A consisting of N integers is given.
A peak is an array element which is larger than its neighbors. More precisely, it is an index P such that 0 < P < N − 1, A[P − 1] < A[P] and A[P] > A[P + 1].
For example, the following array A:
A[0] = 1 A[1] = 2 A[2] = 3 A[3] = 4 A[4] = 3 A[5] = 4 A[6] = 1 A[7] = 2 A[8] = 3 A[9] = 4 A[10] = 6 A[11] = 2
has exactly three peaks: 3, 5, 10.
We want to divide this array into blocks containing the same number of elements. More precisely, we want to choose a number K that will yield the following blocks:
- A[0], A[1], ..., A[K − 1],
- A[K], A[K + 1], ..., A[2K − 1],
...- A[N − K], A[N − K + 1], ..., A[N − 1].
What's more, every block should contain at least one peak. Notice that extreme elements of the blocks (for example A[K − 1] or A[K]) can also be peaks, but only if they have both neighbors (including one in an adjacent blocks).
The goal is to find the maximum number of blocks into which the array A can be divided.
Array A can be divided into blocks as follows:
- one block (1, 2, 3, 4, 3, 4, 1, 2, 3, 4, 6, 2). This block contains three peaks.
- two blocks (1, 2, 3, 4, 3, 4) and (1, 2, 3, 4, 6, 2). Every block has a peak.
- three blocks (1, 2, 3, 4), (3, 4, 1, 2), (3, 4, 6, 2). Every block has a peak. Notice in particular that the first block (1, 2, 3, 4) has a peak at A[3], because A[2] < A[3] > A[4], even though A[4] is in the adjacent block.
However, array A cannot be divided into four blocks, (1, 2, 3), (4, 3, 4), (1, 2, 3) and (4, 6, 2), because the (1, 2, 3) blocks do not contain a peak. Notice in particular that the (4, 3, 4) block contains two peaks: A[3] and A[5].
The maximum number of blocks that array A can be divided into is three.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A consisting of N integers, returns the maximum number of blocks into which A can be divided.
If A cannot be divided into some number of blocks, the function should return 0.
For example, given:
A[0] = 1 A[1] = 2 A[2] = 3 A[3] = 4 A[4] = 3 A[5] = 4 A[6] = 1 A[7] = 2 A[8] = 3 A[9] = 4 A[10] = 6 A[11] = 2
the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer within the range [0..1,000,000,000].
Copyright 2009–2019 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.
import java.util.*;
class Solution {
public int solution(int[] A) {
ArrayList<Integer> peek = new ArrayList<>();
ArrayList<Integer> list = new ArrayList<>();
ArrayList<Integer> lastlist = new ArrayList<>();
for (int i = 1; i < A.length - 1; i++) {
if (A[i - 1] < A[i] && A[i] > A[i + 1]) {
peek.add(i);
}
}
int length = A.length;
int sq = (int) Math.sqrt(length);
for (int i = 1; i <= sq; i++) {
if (length % i == 0) {
list.add(i);
lastlist.add(0, length / i);
}
}
list.addAll(lastlist);
int ans = 0;
for (int k = 0; k < list.size(); k++) {
int cnt = 0;
int divcnt = 0;
int size = A.length / list.get(k);
for (int i = 0; i < peek.size(); i++) {
if (size * divcnt <= peek.get(i) && size * (divcnt + 1) >= peek.get(i)) {
cnt++;
divcnt++;
}
}
if (cnt < list.get(k) && divcnt < list.get(k)) {
break;
} else {
ans = list.get(k);
}
}
return ans;
}
}
'개발 > 알고리즘' 카테고리의 다른 글
Codility 32번 CountNonDivisible (0) | 2019.10.20 |
---|---|
Codility 31번 CountSemiprimes (0) | 2019.10.19 |
Codility 28번 MinPerimeterRectangle (0) | 2019.09.30 |
Codility 26번 MaxDoubleSliceSum (0) | 2019.09.25 |
Codility 27번 CountFactors (0) | 2019.09.23 |